IPEIA 2009 COKER DRUM CRACKING

13TH Annual IPEIA Conference
Banff Centre, Banff, AB
11 - 13 February 2009

DELAYED COKER DRUM CRACKING

EDA Engineering Design & Analysis Ltd.

J Aumuller, P. Eng. Edmonton, AB Canada

• Overview

- Design code & criteria
- Reliability & safety issues
- Analytical study
- Implications
- Invitation

Why do coke drums fail?

Because they are [not intentionally] designed to fail.

Delayed Coker Unit – DCU Operation

IPEIA 2009 COKER DRUM CRACKING

- Coker drums
 - large diameter [20' 30']
 - long length [80' 90']
 - materials of construction
 - carbon steel,
 - C ½ Mo,
 - Cr Mo [1, 1¼, 2¼, 3 Cr]
 - clad TP 405, 410S
 - loading cyclic pressure, thermal, live; dead weight

- Design code considerations
 - Vessels constructed to ASME VIII Div 1
 - ASME VIII Div 1
 - minimum thickness design based on pressure
 - UG 22 loadings to be considered include cyclic and dynamic reactions due to
 - pressure, temperature & mechanical loadings
 - recent design specifications refer to cyclic service conditions imposed by coke formation and decoking operations, BUT specific conditions are undefined, although *designer is asked to "consider these cyclic service conditions"*
 - \rightarrow designer will ignore since specifics in "design spec" are lacking

- Jurisdictional considerations
 - Jurisdictions have not challenged design procedure in past since
 - installations are successful
 - experience indicates that these specific vessel pressure boundary failures are reliability issues rather than pressure safety issues
 - however, need to be mindful of failure mechanisms and long life being achieved on some units → incubation period at end of which, failure rate may accelerate due to da/dn – i.e. crack growth is cycle dependant, loads are statistically distributed

- Reliability Issues
 - Weil & Rapasky 1958 API coke drum survey
 - Thomas 1968, 1980 API coke drum survey
 - 1996 API coke drum survey
 - major, consistent findings
 - deformation, growth & cracking of shell
 - irregular local warping of shell
 - cracking of skirt attachment weld

- Reliability Issues
 - Weil & Rapasky 1958 API coke drum survey

FIG. 1—Successive Stages in Bulging Deformation in Coke Drums (to an Exaggerated Scale).

• actual bulge behavior

Courtesy of CIA Inspection, Hannon ON & Stress Engineering, Houston TX

• actual bulge behavior

cracking associated with circumferential welds

• Safety Issues

- Drum safety with regard to shell integrity issues is good
 - 1996 survey 17 of 145 drums reported fires but none damaging to adjacent equipment
 - not all through wall cracks resulted in fires
 - cracking can occur without bulging, but is not usual case

- Analytical Study
 - load definition
 - numerical & mathematical simulations
 - findings
 - opportunities
 - additional data needs

- Loading Definition
 - temperature cycling
 - steam test
 - vapor heat
 - oil in
 - steam quench
 - water quench
 - pressure cycling
 - pressure rise at start of cycle, nominally constant through cycle, pressure decline to atmospheric at end of cycle
 - live weight cycling
 - deadweight

→ Total Load, TL _{cycle} = $\sum [L_i(x,y,z,t) + D_i(x,y,z,t)]$

• Temperature loading

• Longitudinal stress at shell ID and OD due to temperature

industry assumption is that clad ID is in compressive loading!

• Longitudinal stress plot at shell surfaces & defects

Time

- Estimate of crack initiation & propagation
 - for specific defect model -
 - strain concentration leads to very high notch strain ~ 11,900 $\mu\epsilon$
 - using Coffin-Manson relationship for low cycle fatigue
 - N = 1,967 cycles \rightarrow 5.4 years [12 hour fill, 24 hour cycle time]
 - this is for crack initiation !
 - to assess propagation use fracture mechanics approach

•
$$\frac{\mathrm{da}}{\mathrm{dn}} = \mathrm{C} \cdot \Delta \mathrm{K}^{\mathrm{m}} = 9.84 \cdot 10^{-4} \mathrm{mm/cycle}$$

•
$$n = \int \frac{\mathrm{da}}{\mathrm{C} \cdot \Delta \mathrm{K}^{\mathrm{m}}} = 2,581 \,\mathrm{cycles} \qquad \rightarrow 7 \,\mathrm{years} \,!$$

• compare to experience

• API Coke Drum Survey – First Thru Wall Cracks

Cracked Uncracked 80 Cr-Mo 73 70 60 Number of Drums 50 C-Mo r Cr-Mo 30 44 28 40 30 C-Mo Cr-Mo C-Mo 26 C-S 22 C-S 26 Cr-Mo C-8 24 C-Mo C-8 20 20 22 16 14 18 C-Mo C-8 13 C-Mp 10 8 Cr-Mo C-8 2 4 0 0-2000 <3000 <4000 <5000 <6000 <7000 >7001 **Operating Cycles** Figure 8.01c

Number of Drums Reporting First Through Wall Crack

Source: API Proceedings, 1996 API Coke Drum Survey - Final Report

19

Reconciling theory with experience

Sources: Fatigue Data Sheet 7, 2 ¼ Cr – 1 Mo National Research Institute for Metals, Tokyo, 1978 Factors affecting fatigue properties of stainless steels, ASM Metals Handbook, 8th Ed. Vol 1

- Reconciling theory with experience
 - failure experience
 - SEM measured cracking rates of 2.7.10⁻⁴ to 2.3.10⁻³ mm/cycle
 - cleavage fracture occurs through majority of crack surface !
 - fast crack growth once ID surface crack manifests
 - evaluation
 - calculated crack rate of 9.84.10⁻⁴ mm/cycle in earlier slide
 - once crack propagates through clad, K \approx 18.6 MPa \sqrt{m}

• SCC / HE enabled
$$\rightarrow \frac{da}{dt} = 1 \cdot 10^{-8} \Rightarrow 1 \cdot 10^{-5} \text{ m/sec}$$

• t = 29 days to < 1 hour ! \rightarrow coincides with observation

Conclusions

- initial failure dependant on fatigue mechanism / initial defect
 - initiates in clad clad weld base material weld
 - apparent driver is nominal load cycling, L = L(x,y,z,t)
 - moderately to severely aggravated by superimposed local deviation load conditions, such as bulging & hot spots - D = D(x,y,z,t)

 \rightarrow Total loading = L + D, da/dn failure initiation mechanism

final failure due to time dependant environmentally assisted corrosion mechanism

 \rightarrow HEAC, IHAC, da/dt failure fast-propagation mechanism

- opportunities to improve unit availability & reliability
 - design
 - fabrication
 - operation
 - inspection & maintenance
 - \rightarrow there are key factors influencing crack initiation and propagation
 - → use existing general knowledge & techniques
 - for specification of more failure resistant designs
 - for better estimation of expected service life

- how ?
 - specific knowledge, tools & techniques mostly in place
 - certain key methodologies being developed or planned
 - lacking
 - data easily obtained but not retained by purchasers
 - data not currently available but needed for general application for condition and life assessments
 - data not currently available but needed for accurate individual application for condition and life assessments

- invitation
 - joint industry program
 - recover data applicable to general assessments
 - apply existing & new tools using the collected data
 - customize to specific operations
 - contact

John Aumuller, EDA Ltd. Dr Zihui Xia, University of Alberta zihui.xia@ualberta.ca

aumullerj@engineer.ca

References

- 1. ASME, "ASME Section VIII Div 1", ASME, New York, NY 2004
- Weil, N.A., Rapasky, F.S., "Experience with Vessels of Delayed Coking Units", Proceedings of the API Division of Refining vol. 38 no. 3 1958 Washington, D.C.
- 3. J.W. Thomas, "API Survey of Coke Drum Cracking Experience", 1980 American Petroleum Institute, Washington, D.C.
- 4. API Proceedings, "1996 API Coke Drum Survey Final Report" 1996 American Petroleum Institute, Washington, D.C.
- 5. Samman, M., Duplessis, P., "Assessment of Bulging Severity Using the Bulging Intensity Factor (BIF), 2008 Coke Drum Seminar, Houston, TX
- 6. ASM International, "ASM Handbook", Materials Park, OH 1996